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Abstract. We give new proofs that the Mandelbrot set is locally
connected at every Misiurewicz point and at every point on the
boundary of a hyperbolic component. The idea is to show “shrink-
ing of puzzle pieces” without using specific puzzles. Instead, we
introduce fibers of the Mandelbrot set (see Definition 4.2) and show
that fibers of certain points are “trivial”, i.e., they consist of single
points. This implies local connectivity at these points.

Locally, triviality of fibers is strictly stronger than local con-
nectivity. Local connectivity proofs in holomorphic dynamics often
actually yield that fibers are trivial, and this extra knowledge is
sometimes useful. We include a proof that local connectivity of
the Mandelbrot set implies density of hyperbolicity in the space of
quadratic polynomials (Corollary 4.6).

We write our proofs more generally for the “Multibrot sets”
Md := {c ∈ C : the Julia set of z �→ zd + c is connected}.
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1. Introduction

A great deal of work in holomorphic dynamics has been done in re-
cent years trying to prove local connectivity of Julia sets and at many
points of the Mandelbrot set M, notably by Yoccoz, Lyubich, Levin,
van Strien, Petersen and others. One reason for this work is that the
topology of Julia sets and the Mandelbrot set is completely described
once local connectivity is known: if such a set is locally connected,
then it is homeomorphic to quite a simple combinatorial-topological
“pinched disk” model [Do]. Another reason is that local connectivity
of M implies that hyperbolicity is dense (and of course open) in the
space of quadratic polynomials [DH1]. By universality of the Man-
delbrot set [DH2, McM], this would imply that hyperbolicity was
open and dense in many other one-dimensional spaces of rational and
even transcendental maps; see for example [F] for the family of cubic
polynomials with a superattracting fixed point: local connectivity of
the bifurcation locus can be established at every point which is not on
the boundary of an embedded copy of the Mandelbrot set, and a non-
hyperbolic open set in parameter space would be contained within a
homeomorphic copy of M. A third reason is that local connectivity of
M implies combinatorial rigidity of quadratic polynomials: if two qua-
dratic polynomials in M are not conformally conjugate to each other,
then they can be distinguished already by the combinatorics of which
periodic dynamic rays land at the same points (provided that all pe-
riodic orbits are repelling). Douady has coined the term “points are
points” for this property: a “combinatorial point” in ∂M is the set of
parameters with combinatorially equivalent dynamics, and the task is
to show that every combinatorial point is a single point in C.

Landing properties of external rays of a compact connected and
full set K ⊂ C (such as the Mandelbrot set and Julia sets) are closely
related to local connectivity of K: by Carathéodory’s theorem [M1,
Theorem 17.14], the set K is locally connected if and only if all external
rays land such that the landing points depend continuously on the
angle. This yields a continuous surjection S1 → ∂K known as the
Carathéodory loop (each angle ϑ ∈ S1 maps to the landing point of
the ray at angle ϑ). Even if K is not known to be locally connected,
most external rays land for general reasons ([M1, Theorem 17.4] or
[P, Theorem 1.7]) (although in general one cannot easily tell whether
or not a given ray lands). If the set K is locally connected at some
z ∈ ∂K, then it “almost” follows that z is the landing point of at
least one external ray: local connectivity at z is not quite good enough
(nor even a necessary condition); but many proofs of local connectivity
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show a slightly stronger property which does imply that z is the landing
point of external rays (see below).

The boundary behavior of Riemann maps, and the landing of exter-
nal rays, is studied by the classical theory of prime ends [P, M1]. This
includes the concept of impressions defined in Section 2. In complex
dynamics, it has often proved useful to approach the boundary in more
than one direction at a time, obtaining information for example from
the fact that several external rays land at the same point. A funda-
mental construction in many proofs of local connectivity is the puzzle
technique introduced by Branner, Hubbard and Yoccoz [BH, H, M2].
Local connectivity at a point z ∈ ∂K is established by proving shrink-
ing of puzzle pieces around z; if these puzzle pieces shrink to {z}, then
K is locally connected at z and external rays land at z.

At present, local connectivity of many Julia sets is known, while
local connectivity of the Mandelbrot set is still a conjecture — arguably
the principal conjecture in the field. However, it is known that M is
locally connected at many of its boundary points [H, L]. This was
proved using puzzle techniques, which implies that external rays of M

land at these points.
The present paper has several purposes: one of them is to give a

condition “slightly stronger” than local connectivity which implies that
a point z ∈ ∂M is the landing point of an external ray. We introduce
fibers of M as the collection of points in M which will always be in
the same puzzle piece, no matter how the puzzle is constructed. Our
arguments will thus never use specific puzzles. We say that the fiber
of some c ∈ M is trivial if it consists of c alone. If c ∈ ∂M has trivial
fiber, then it follows that M is locally connected at c and that c is the
landing point of external rays. Douady’s joke “points are points” thus
acquires the more precise meaning “fibers are points”.

It turns out that the idea of fibers allows to give easy proofs of
certain fundamental and classical results about local connectivity of
M: we prove that all boundary points of hyperbolic components and
all Misiurewicz points have trivial fibers.

One problem in holomorphic dynamics is that many results are
folklore, with few accessible proofs published. In particular, many of
the fundamental results about the Mandelbrot set, due to Douady and
Hubbard, have been described in their famous “Orsay notes” [DH1],
which have never been published. They are no longer available, and
it is not always easy to pinpoint a precise reference even within these
notes. Meanwhile, many of these results have been proved or at least
sketched in [H, M3, S1, PR, TL2, Do]. This paper provides proofs,
some of them new, of certain key results about the Mandelbrot set,
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such as the fact that local connectivity implies density of hyperbolicity
in the space of quadratic polynomials. At the end, we discuss some
of the consequences of local connectivity of M as mentioned above:
we relate combinatorial classes to fibers, and we briefly mention the
pinched disk model of M.

While our main results on the Mandelbrot set are known, the
proofs are more combinatorial-topological and less complex analytic
than known proofs, and they thus apply in other circumstances (such
as for the “Tricorn”). We write our proofs more generally for param-
eter spaces of polynomials of the form z �→ zd + c. In addition, fibers
have pleasant built-in properties related, for instance, to renormaliza-
tion and tuning [S4]: a point c ∈ M has trivial fiber if and only if
the point Ψ(c) has trivial fiber, for every “tuned copy” Ψ: M → M of
the Mandelbrot set within itself. Similar results hold for other partial
homeomorphisms of parts of M into itself, such as those obtained by
quasiconformal surgery.

We discuss polynomials of the form pc : z �→ zd + c, for arbitrary
complex constants c and arbitrary degrees d ≥ 2. These are, up to
normalization, exactly those polynomials which have a single critical
point. Following a suggestion of Milnor, we call these polynomials uni-
critical (or unisingular). We will always assume unicritical polynomials
to be normalized as above, and the variable d will always denote the
degree. We define the Multibrot set of degree d as the connectedness
locus of these families, that is

Md := {c ∈ C : the Julia set of z �→ zd + c is connected } .

In the special case d = 2, we obtain quadratic polynomials, and M2 =
M is the familiar Mandelbrot set. All the Multibrot sets are connected,
they are symmetric with respect to the real axis, and they also have
d − 1-fold rotation symmetries (see [LS2] with pictures of several of
these sets). The present paper can be read with the quadratic case
in mind throughout. However, we have chosen to do the discussion
for all the Multibrot sets because this requires only occasional slight
modifications – and because recently interest in the higher degree case
has increased; see e.g. Levin and van Strien [LvS] or McMullen [McM].

In a related paper [S2], we have introduced the concept of fibers
for arbitrary compact connected and full subsets of C, and we have
applied it to Julia sets. We allowed for some overlap with [S2] in order
to make the present paper more self-contained: Fibers of Mandelbrot
and Multibrot sets are born with nicer properties than can be expected
in general, and this simplifies the discussion. An earlier version of this
paper appeared as [S3].
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We begin in Section 2 by a review of certain important properties
of Mandelbrot and Multibrot sets. The main result in Section 3 is
the “Branch Theorem” which states that branch points (in a certain
sense) in Multibrot sets are postcritically finite. We then define fibers
for these sets in Section 4. We also show that the fiber of an interior
point is trivial if and only if it is in a hyperbolic component. We
conclude the section by a proof that local connectivity of the entire set
Md is equivalent to triviality of all fibers, and both conditions imply
density of hyperbolicity (using an argument of Douady and Hubbard;
Corollary 4.6). Note however that in general, triviality of the fiber of
some c ∈ Md is strictly stronger than local connectivity of Md at c.

We then prove that every Multibrot set has trivial fibers and is thus
locally connected at every boundary point of a hyperbolic component
and at every Misiurewicz point. Boundaries of hyperbolic components
are discussed in Section 5, except roots of primitive components: they
require special treatment which can be found in Section 6. In Section 7
we prove that fibers of Misiurewicz points are trivial. This shows that
fibers of Multibrot sets have particularly convenient properties. Finally,
in Section 8, we compare fibers to combinatorial classes.

Acknowledgements. Over the years, many people have shared
their insights with me, in particular during several longer and shorter
visits at the Institute of Mathematical Sciences in Stony Brook and at
the MSRI in Berkeley. Especially helpful were discussions with Misha
Lyubich, John Milnor and with Genadi Levin. I would also like to men-
tion interesting discussions with Saeed Zakeri, Adam Epstein, Tan Lei
and, more recently, my graduate students in Bremen: Markus Förster,
Alexandra Kaffl, Günter Rottenfußer, and Johannes Rückert. I wish
to thank them all. Finally, I would like to express my deep gratitude
to an anonymous referee for very helpful comments.

2. Multibrot Sets

In this section, we review some necessary background about Multibrot
sets and prove several fundamental properties. Most of these are originally
due to Douady and Hubbard [DH1] in the quadratic case; more recent
references include [M3, S1] and, for degrees d ≥ 2, [Eb, ES, PR]. All
Multibrot sets Md are compact, connected and full (a compact subset of
C is called full if its complement in C is connected). It is conjectured but
not yet known that the Multibrot sets are locally connected. However, it
is known that many of its fibers are trivial. We will show this for certain
particularly important fibers in Sections 5, 6 and 7. We use the standard
notations C for the Riemann sphere and D for the open unit disk in C.
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• Parameter Rays, Dynamic Rays, and Ray Pairs

We recall the definition of external rays: for a compact connected
and full subset K ⊂ C consisting of more than a single point, there is a
unique conformal isomorphism Φ: C\K → C\ D fixing ∞, normalized
so that limc→∞ Φ(c)/c ∈ R+. Inverse images of radial lines in C \ D

are called external rays, and an external ray at some angle ϑ is said
to land if the limit limr↘1 Φ−1(re2πiϑ) exists. The impression of this
external ray is the set of all limit points of Φ−1(r′e2πiϑ′

) for r′ ↘ 1 and
ϑ′ → ϑ. Note that we measure external angles in full turns: they live
in S1 := R/Z.

As in [S1] and [M3], we will call external rays of Multibrot sets
parameter rays in order to distinguish them from external rays of Julia
sets, which are called dynamic rays. The parameter ray at angle ϑ for
some Md will be denoted RMd

(ϑ) or simply RM(ϑ), while the dynamic
ray at angle ϑ for the Julia set at parameter c will be denoted by Rc(ϑ)
or simply R(ϑ). All parameter rays at rational angles are known to
land (see Douady and Hubbard [DH1], Schleicher [S1], Petersen and
Ryd [PR], Eberlein [Eb, ES] or, in the periodic case, Milnor [M3]).

A ray pair is a collection of two external rays (dynamic or param-
eter rays) which land at a common point. If a ray pair is periodic or
preperiodic (i.e. both rays are periodic resp. preperiodic), then the two
rays have equal periods and preperiods. A ray pair at angles (α, α′)
separates two points z, z′ ∈ C if the two points are in different con-
nected components of C \ R(α) ∪ R(α′) (in particular, a ray pair does
not separate its landing point from any other point).

A dynamic ray pair is characteristic if it separates the critical value
from the critical point and from all the other rays on the forward orbit
of the ray pair. A periodic or preperiodic point is characteristic if it is
the landing point of a characteristic ray pair. If a periodic ray pair is
not characteristic, then exactly one of the finitely many ray pairs on the
forward orbit of the ray pair is characteristic [M3, Lemma 2.11]. Every
preperiodic ray pair has exactly one periodic characteristic ray pair on
its forward orbit and possibly one or several preperiodic ones. The
landing point of a periodic or preperiodic dynamic ray pair is always
on a repelling or parabolic orbit; if a preperiodic dynamic ray pair is
characteristic, then its landing point is necessarily on a repelling orbit.

The following theorem will be used throughout this paper. The first
half is due to Lavaurs [La] for degree d = 2; the arguments in [M3]
generalize to prove the full statement.
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Theorem 2.1 (Correspondence of Ray Pairs).
For every degree d ≥ 2 and every unicritical polynomial z �→ zd+c with
c ∈ Md, there are bijections between the parameter ray pairs at periodic
and preperiodic angles which separate 0 and c, and the characteristic
periodic and preperiodic ray pairs in the dynamic plane of c landing at
repelling orbits. This bijection preserves external angles.

The critical value is never the landing point of a periodic dynamic
ray. It is the landing point of a preperiodic dynamic ray if and only if
the critical orbit is strictly preperiodic; in this case, the external angles
of the parameter rays landing at c (the parameter) are the same as the
external angles of the dynamic rays landing at c (the critical value).

Not all periodic and preperiodic parameter rays are organized in
pairs. The number of parameter rays at preperiodic angles landing at
a common point can be any positive integer. For parameter rays at
periodic angles, this number is either 1 or 2; in the quadratic case, this
number is always 2 (we count the parameter rays at angles 0 and 1
separately).

All parameter rays at periodic angles are known to land at parabo-
lic parameters (those parameters for which the critical orbit converges
to a unique parabolic orbit). All parameter rays at preperiodic an-
gles land at parameters where the critical value is strictly preperiodic:
such parameters are (somewhat unfortunately) known as “Misiurewicz
points”.

• Hyperbolic Components

A hyperbolic component of Md is a connected component of the set
{c ∈ Md : zd + c has an attracting periodic orbit}. The results in this
subsection go back to [DH1] for d = 2; see also [M3, S1] and, for
d ≥ 2, [Eb, ES].

Theorem 2.2 (Hyperbolic Components). Every hyperbolic compo-
nent W is open, and every c ∈ W has a unique attracting periodic
orbit, the period of which is constant throughout W . The multiplier
induces a holomorphic map µ : W → D which extends continuously to
µ : W → D as a branched cover of degree d− 1, ramified only over the
value 0.

In particular, µ restricts to a degree d − 1 cover ∂W → ∂ D. We
say that c ∈ ∂W has internal angle ϑ if µ(c) = e2πiϑ.

Every hyperbolic component W has a unique center: this is the
unique c ∈ W with µ(c) = 0; in the corresponding dynamics, the
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Figure 1. Several parameter and dynamic ray pairs il-
lustrating Theorem 2.1; see next page.
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attracting orbit is superattracting, so the critical orbit is periodic. If
the period of W is at least 2, then there is a unique parameter cW ∈ ∂W
which is the landing point of two parameter rays which separate W
from 0. The parameter cW is called the root of W . The multiplier
map µ : W → D always has µ(cW ) = 1. There are d − 2 further
parameters c ∈ ∂W with µ(c) = 1 but c 	= cW ; such parameters are
called co-roots of W . While each root is the landing point of exactly
two parameter rays, every co-root is the landing point of exactly one
parameter ray. All these parameter rays have periodic angles with the
same periods as the hyperbolic components at whose (co-)roots the
rays are landing. Dynamically, roots and co-roots are parameters with
parabolic orbits the period of which divides the period of W . At the
root, every parabolic periodic point is the landing point of at least two
periodic dynamic rays, while at co-roots, exactly one periodic dynamic
ray lands at each parabolic periodic point. For period 1 and degrees
d > 2, the d − 1 boundary parameters of W with µ(W ) = 1 have
conjugate dynamics, and it makes little sense to distinguish between
root and co-roots.

In the example in Figure 1, the parameter rays at angles 1/7 and
2/7 land at the root of a hyperbolic component of period 3, and the
rays at angles 10/63 and 17/63 land at the root of a component of
period 6. Both components are above the parameter ray pairs landing
at their roots.

Every parabolic parameter is root or co-root of a unique hyperbolic
component, and every periodic parameter ray lands at the root or at a
co-root of a hyperbolic component (of equal period).

Figure 1. (On previous page) Top: Detail of the
Mandelbrot set with several parameter ray pairs at peri-
odic and preperiodic angles drawn in, together with the
parameter ray at angle 13/60 which lands alone at some
parameter c13/60 ∈ M2 and which is separated from the
origin by all ray pairs shown. Bottom: The dynamical
plane for the parameter c13/60 (detail), with the dynamic
rays at the same angles drawn in. The dynamic ray at
angle 13/60 lands at the critical value, the others form
the same ray pairs as in parameter space, and they all
separate the critical value from the origin. Note that the
rays at angles 1/7 and 2/7 form a characteristic ray pair;
the ray at angle 4/7 lands at the same point, but is not
part of a characteristic ray pair.
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No co-root is on the boundary of another hyperbolic component. If
the root of a hyperbolic component W is on the boundary of another
hyperbolic component W ′, then the period of W ′ strictly divides that of
W , and W is called a satellite component (or non-primitive); otherwise,
W is called primitive. If two hyperbolic components have a common
boundary point, then this common boundary point is the root of one
component, which is a satellite of the other. If ϑ and ϑ′ are the two
external angles of the parameter rays landing at the root of W , then
W is a satellite if and only if dkϑ = ϑ′ and dk′

ϑ′ = ϑ for some integers
k, k′ > 0; otherwise, W is primitive and dkϑ 	= ϑ′, dk′

ϑ′ 	= ϑ for all
k, k′ > 0.

For every hyperbolic component W of Md with period n, every
c ∈ ∂W with µ(c) = e2πip/q and p/q ∈ (Q \Z)/Z in lowest terms is the
root of a satellite component Wp/q of period qn. This component Wp/q

is sometimes called a p/q-satellite of W .

• Wakes and Limbs

The wake of a hyperbolic component W is the connected open do-
main in the complex plane separated from the origin by the two periodic
parameter rays landing at the root of W . A p/q-subwake of W is the
wake of a p/q-satellite component of W . The intersection of Md with
the wake or a p/q-subwake of W is called the limb or p/q-sublimb of
W . For a hyperbolic component W with root cW and limb LW , the
set LW ∪ {cW} is compact. It is the root cW which disconnects LW

from the rest of Md; we will show in Corollary 5.2 that each limb is
connected.

All the finitely many preperiodic parameter rays landing at any
Misiurewicz point cut C into as many open parts as there are rays.
The part containing the origin will be called the wake exterior of the
Misiurewicz point, while all the other parts are its subwakes. The union
of all subwakes, together with the parameter rays between them, will
be called the wake of the Misiurewicz point: this is the complement
in C of the closure of the zero subwake. If only one ray lands at the
Misiurewicz point, then the wake is empty, and the wake exterior is the
entire complex plane minus the ray and its landing point.

Centers of hyperbolic components and Misiurewicz points together
form the countable set of postcritically finite parameters. When treat-
ing them simultaneously, it will sometimes simplify language to identify
a hyperbolic component with its center and speak e.g. of the “wake of
c0”, meaning of course the wake of the component with center c0.
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The following result was originally proved by Yoccoz for degree
d = 2 using a bound on sizes of sublimbs (the “Yoccoz inequality”);
see Hubbard [H, Section I.4]. That proof, as well as ours, uses in
an essential way the following fact due to Douady: every repelling
periodic point in a connected Julia set is the landing point of at least
one periodic dynamic ray [H, Theorem I.A], [M1, Theorem 18.11].

Theorem 2.3 (No Irrational Subwakes).
Any point in Md within the wake of a hyperbolic component is either in
the closure of the component or within one of its sublimbs at rational
internal angles with denominator at least two.

Remark. Sometimes, this theorem is phrased as saying that hyper-
bolic components have “no ghost limbs”: for every hyperbolic com-
ponent, decorations within the component’s wake are attached only
at parabolic boundary points, but not at the root, at co-roots, or at
irrational boundary points.

Proof. Let W be a hyperbolic component, let n be its period and
let c̃ be a point within the limb of the component but not on the
closure of W . There are finitely many hyperbolic components of pe-
riods up to n, some of which might possibly be within the wake of
W . We lose nothing if we assume that c̃ is outside the closures of
the wakes of such hyperbolic components, possibly after replacing c̃
with a different parameter: if there was a hyperbolic component of
period up to n in an “irrational sublimb” of W , then this same “irra-
tional sublimb” is connected and thus contains points arbitrarily close
to W . More precisely, we can argue as follows: the rational parameter
rays landing on the boundary of W split into two groups according
to whether they pass c̃ to the “left” or “right”, and the region in the
wake of W sandwiched between these rays is connected. (Moreover,
it is quite easy to show directly that every hyperbolic component in
the wake of W is contained in a subwake at rational internal angle,
for example using Hubbard trees or a formula for the “width” of sub-
wakes.)

Denote the center of W by c0. There is a path γ connecting c0 to
c̃ within the wake of W and avoiding the closures of the wakes of all
hyperbolic components of periods up to n within the wake of W , except
W itself. This path need not be contained within Md. For the parame-
ter c0, the critical value is a superattracting periodic point. We want to
continue this periodic point analytically along γ, obtaining an analytic
function z(c) such that the point z(c) is periodic for the parameter c
on γ. This analytic continuation is uniquely possible because we never
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encounter multipliers +1 for a period-n orbit along γ. Therefore, we
obtain a unique periodic point z(c̃) which is repelling. Since c̃ is within
the connectedness locus, the point z(c̃) is the landing point of finitely
many dynamic rays at periodic angles.

For the parameter c0, all the periodic dynamic rays of periods up to
n land at repelling periodic points of periods up to n. These periodic
points can all be continued analytically along γ, they remain repelling
and keep their dynamic rays because the curve avoided parameter rays
of periods up to n which make up wake boundaries. Therefore, at the
parameter c̃, there is no dynamic ray of period n available to land at
z(c̃), so that the rays landing at this point must have periods sn, for
some s ≥ 2. Therefore, at least s rays must land at z(c̃) (in fact,
the number of rays must be exactly s). Now let Ũ be the largest
open neighborhood of c̃ in which this periodic orbit can be continued
analytically as a repelling periodic point, retaining all its s dynamic
rays. This neighborhood is the wake of the orbit and is at the heart of
Milnor’s discussion in [M3]. This wake is bounded by two parameter
rays at periodic angles, landing together at a parabolic parameter of
ray period sn and orbit period n. Denote this landing point by c̃0.
Obviously, Ũ cannot contain the hyperbolic component W , so Ũ must
be contained within the wake of W .

The point c̃0 is on the boundary of a hyperbolic component of period
at most n within the wake of W . The wake of this component contains
Ũ and thus c̃, so this component can only be W by the assumptions
on c̃. It follows that Ũ is a subwake of W at a rational internal angle.

Remark. This result goes a long way towards proving local connectiv-
ity of the Multibrot sets at boundary points of hyperbolic components,
as was pointed out to us by G. Levin: see Corollary 5.1.

3. Hubbard Trees and Branch Points

In this section, we introduce Hubbard trees as dynamically significant
subsets of Julia sets with a number of useful properties. We exploit this
information in order to get a tree-like structure for the Multibrot sets, at
least from a combinatorial point of view. The most important fact is the
Branch Theorem 3.1 which asserts that branch points in Multibrot sets are
postcritically finite.
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• Hubbard Trees

In [DH1], Hubbard trees were introduced for arbitrary postcriti-
cally finite polynomials; we need them only for Misiurewicz parameters
c. In this case, the Julia set J of c is a dendrite: it is compact, con-
nected, locally connected and has no interior, and its complement is
connected [M1, Theorem 19.7]. Therefore, J is uniquely arcwise con-
nected: any two points z, z′ ∈ J are connected by an arc [z, z′] ∈ J
which is unique up to reparametrization. To see this, recall first that
compact connected locally connected metric spaces are arcwise con-
nected [M1, Lemmas 17.17 and 17.18]; if there were two arcs in J con-
necting z and z′ along different subsets of J , then the union of these
two arcs would disconnect C. Clearly, J has d-fold rotational symme-
try around 0, and if ζ 	= 1 is a d-th root of unity, then 0 ∈ [z, ζz] for
any z ∈ J .

In the Misiurewicz case, the critical orbit consists of finitely many
points c0 = 0, c1 = c, c2, . . . ∈ J with ck+l = cl for some k, l > 0;
choosing k and l minimal, it follows that ck+l−1 = ζcl−1, where ζ 	= 1 is a
d-th root of unity. Moreover, l ≥ 2 because the critical value c1 = c has
only c0 = 0 as preimage. The union of the finitely many arcs [ci, cj] ⊂ J
forms a finite topological tree within J , called the Hubbard tree T . By
construction, all endpoints of T are on the critical orbit. Since ck+l−1 =
ζcl−1, it follows that 0 ∈ [ck+l−1, cl−1], so 0 is not an endpoint of T .

For all ci, cj ∈ T , we have [pc(ci), pc(cj)] = [ci+1, cj+1] ∈ T . There-
fore, pc([ci, cj]) = [ci+1, cj+1] if 0 /∈ [ci, cj], while pc([ci, cj]) = [ci+1, c] ∪
[c, cj+1] otherwise. Since T is the union of arcs [ci, cj], it follows that
pc(T ) ⊂ T . In fact, pc(T ) = T : this is because pc(T ) is clearly a
connected subset of T containing c1, c2, . . ., hence all endpoints of T .

If z ∈ T is not an endpoint, then pc0(z) is not an endpoint either
unless z = 0 (because pc is a local homeomorphism near every z 	= 0).
If the critical value c1 was not an endpoint, then no point on the critical
orbit could be an endpoint, which is a contradiction to the fact that
all endpoints of T are on the critical orbit. Therefore, c1 is always an
endpoint.

The pc-image of any branch point z 	= 0 is another branch point
with at least as many edges (possibly more). Since T is a finite tree
with finite critical orbit, it follows that all branch points are periodic or
preperiodic, and all the periodic branch points have the same number
of incident edges. It is quite possible that some endpoint maps to a
branch point under iteration of pc.

The map pc : T → T is expanding in the following sense: for any
arc [z, z′] ⊂ T with z 	= z′, there is a k ∈ N such that p◦kc0

([z, z′]) 
 0.
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Indeed, the set of points in J which are in the same connected compo-
nent of J \ {c0} for k iterations has diameter tending to 0 as k → ∞;
this follows from an easy hyperbolic contraction argument.

Every Hubbard tree T has exactly one interior fixed point, usually
called α: this is a fixed point such that T \ {α} is disconnected. To
see this, observe that every polynomial pc of degree d has exactly d− 1
dynamic rays which are fixed under pc: these are the rays at angles
k/(d − 1) for k = 0, 1, . . . , d − 2, and they must land at fixed points
of pc. Indeed, all their landing points must be different (otherwise,
two such rays landing at a common point cut C into two open parts,
and the part not containing the critical point would have to map to
itself homeomorphically). Now pc has exactly d fixed points in C,
counting multiplicities. If the critical orbit is preperiodic, then all
d fixed points are distinct and repelling, so there remains one fixed
point, called α, which must be the landing point of several periodic
rays of period at least 2. Since these rays are not fixed, they must
be permuted transitively by pc [M3, Lemma 2.7]. This implies that
α ∈ [0, c] ⊂ T : we have pc([α, 0]) = [α, c], and since the rays at α are
permuted transitively, it follows that [α, 0] ∩ [α, c] = {α}.

The two rays at α enclosing the critical value are the characteristic
rays at α, and in parameter space they bound the wake of a hyperbolic
component which bifurcates from the unique period 1 component: this
wake is a subwake of the period 1 hyperbolic component, and this
subwake contains the parameter c.

• Branch Points in Multibrot Sets

Of fundamental importance for the investigation of the Multibrot
sets is the following Branch Theorem, which was first proved by Douady
and Hubbard for the Mandelbrot set. This theorem is one of the princi-
pal results of their theory of “nervures” (Exposés XX–XXII in [DH1];
the Branch theorem is their Proposition XXII.3). Another proof can
be found in [LS1, Theorem 9.1].

Theorem 3.1 (Branch Theorem).
For every two postcritically finite parameters c 	= c̃, exactly one of the
following holds:

• c is in the wake of c̃, or vice versa;
• there is a Misiurewicz point such that c and c̃ are in two dif-

ferent of its subwakes;
• there is a hyperbolic component such that c and c̃ are in two

different of its subwakes.
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Proof. Let ϑ be the external angle of one of the parameter rays
landing at the parameter c̃ (if that is a Misiurewicz parameter) or at
the root of the hyperbolic component with center c̃ (otherwise). We will
work in the dynamical plane of c, which we tried to sketch in Figure 2.

Assumption. Suppose that c is a Misiurewicz parameter: the critical
orbit c0 = 0, c1 = c, c2, c3, . . . is strictly preperiodic. In this case, the
Julia set J is a dendrite, and for any two points z, z′ ∈ J there is
a unique arc [z, z′] in J connecting z and z′. As defined before, the
Hubbard tree of J is the union of arcs connecting the finite critical
orbit. Let ã ∈ J be the (pre-)periodic point at which the dynamic
ray R(ϑ) lands. Clearly c 	= ã (otherwise, c = c̃ contradicting the
hypothesis).

If c ∈ [0, ã], then two dynamic rays land at c and, by Theorem 2.1,
the parameter rays at the same angles land at c and separate the pa-
rameter ray at angle ϑ and the point c̃ from the origin, so c̃ is in the
wake of c. Similarly, if ã ∈ [0, c] and ã is a characteristic (pre)periodic
point, then c is in the wake of c̃. If none of these cases occurs, then
[0, ã] ∩ [0, c] = [0, b] for some point b which is a branch point in the
Julia set, or b = ã and ã is not characteristic.

Now we claim that the union of forward images of the arcs [0, c] and
[0, ã] has the topological type of a finite tree. To see this, observe first
that the union of forward images of [0, c] = [c0, c1] equals the Hubbard
tree T : it contains the critical orbit, it contains the arcs [0, c1], [c1, c2],
[c2, c3],. . . , so it is a finite connected tree spanned by the critical orbit,
and this is the Hubbard tree. Finally, we join the forward images of
[0, ã]. Since ã has finite orbit and the orbit of 0 is in T , it follows indeed
that the union of forward images of the arcs [0, c] and [0, ã] is a finite
tree T ′, say. In particular, it has finitely many branch points.

Since T ′ is forward invariant, all these branch points are periodic
or preperiodic (or critical, but then they have finite forward orbits by
assumption); in particular, the forward orbit of b is finite. If c and
c̃ are in different subwakes of the main hyperbolic component of Md

of period 1, then the theorem is trivially true. We may thus assume
that c and c̃ are in the same subwake of the period 1 component. The
parameter rays bounding this subwake have the same angles as the
two characteristic dynamic rays landing at the α-fixed point, so in the
dynamical plane of c both c and ã are surrounded by these characteristic
rays and α ∈ [0, b]. In particular, b 	= 0.

The arc [0, b] is naturally ordered so that 0 is the least and b is
the largest element. Consider the set Z of characteristic (pre-)periodic
points on [0, b] and let a be the supremum of Z \{b}. It is not clear yet
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2a

c1

0

ϑb
a

Figure 2. A sketch of the dynamic plane for the pa-
rameter c as used in the proof of the Branch Theorem 3.1.

that a is periodic or preperiodic; but if it is, then it is characteristic
(as a limit of characteristic (pre-)periodic points).

(1) The case that a 	= b: we first show that there is a periodic
point in [a, b]. Since the dynamics is expanding, there is a k ≥ 0 and a
w ∈ [a, b] which maps to c after k iterations, and we may suppose that k
is minimal with this property. Since a is a limit of characteristic points,
the forward orbit of a does not intersect [a, c]\{a}. Therefore, the k-th
forward iterate of [a, w] contains [a, w], and by the intermediate value
theorem there is a point z ∈ [a, b] with z 	= b which is fixed under the
k-th iterate.

Next we show that a is periodic. This is clear if z = a. If z 	= a, then
replace z by the periodic point of lowest period in the interior of [a, b].
By construction of a, the point z cannot be characteristic, so there is a
characteristic point on the forward orbit of z. By definition, this means
that there is a first number s of iterations after which z maps into [z, c];
clearly, s is less than the period of z. Similarly as before, the image of
[a, z] after s iterations contains [a, z] itself, so there is a periodic point
p ∈ [a, z] with period at most s. Since the period of p is less than the
period of z, we have p 	= z, and p cannot be in the interior of [a, z]
by construction of z. Therefore, p = a, so a is periodic with period at
most s.

Since a is periodic, it is characteristic as stated above. Now a is the
landing point of at least two dynamic rays, and the two characteristic
rays reappear as parameter rays landing at the root of a hyperbolic
component by Theorem 2.1. Looking at external angles, it follows that
the points c and c̃ are contained in the wake of this component. If
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they were contained within the same subwake, the two parameter rays
bounding this subwake would correspond to a characteristic periodic
point in Z behind a, but by maximality of a the only possible candidate
for such a point is b. The characteristic rays of b surround the critical
value c1 but not a2 and the ray at angle ϑ, and this is a contradiction.
Therefore, Theorem 2.3 implies that c and c̃ are contained in different
subwakes.

(2) The case that a = b: in this case, b is characteristic. If b = ã,
then ã is characteristic, and this case has been treated earlier (implying
that c is in the wake of c̃). The remaining case is that b is a branch
point, hence the landing point of at least three dynamic rays which
separate the points c and ã from each other and from the origin.

The point b is a limit of characteristic points in Z. If b was periodic,
the dynamic rays landing at b would be permuted transitively by the
first return map of b ([M3, Lemma 2.7], [S1, Lemma 2.4]), and points
in Z sufficiently close to b would be mapped onto [b, c], a contradiction.
Therefore, b is preperiodic, and Theorem 2.1 turns the three dynamic
rays landing at b into three parameter rays landing at a common Misiu-
rewicz point such that c and c̃ are in two different of its subwakes be-
cause these subwakes contain the parameter rays associated to c and c̃.

This finishes the proof of the theorem if c is a Misiurewicz point.
If c is the center of a hyperbolic component, find a Misiurewicz point
c′ in the wake of c and apply the previous proof to c′ and c̃. If c̃ is not
in the wake of c, then the branch point for c′ and c̃ also is the branch
point for c and c̃.

Remark. In [Do, S4, R], it is shown that the Mandelbrot set M2

is “almost” arcwise connected: at least every hyperbolic component
and every Misiurewicz point can be connected to 0 by an arc in M2,
i.e. by an injective curve γ : [0, 1] → M2. The Branch Theorem implies
then that arbitrary arcs in the Mandelbrot set connecting postcritically
finite parameters can branch off from each other only at Misiurewicz
points or within hyperbolic components. For Multibrot sets Md with
d > 2, less is known about pathwise connectivity (see [R]); the Branch
Theorem is thus better interpreted in a combinatorial way: for two
postcritically finite parameters c1, c2 ∈ Md with disjoint wakes, there
is a Misiurewicz point or hyperbolic component c such that c1 and
c2 are in different subwakes of c — branch points in Md are always
postcritically finite.

As a first corollary, we can describe how many rational parameter
rays may land at the boundary of any interior component of a Multibrot
set. All the known interior components of Multibrot sets are hyperbolic
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components in which the dynamics has an attracting periodic orbit. It
is conjectured that non-hyperbolic (“queer”) components do not exist.

Corollary 3.2 (Interior Components of the Multibrot Sets).
Every hyperbolic component of a Mandelbrot or Multibrot set has in-
finitely many boundary points which are landing points of rational pa-
rameter rays, and all of them are accessible from inside the component.
Every non-hyperbolic component has at most one boundary point which
is the landing point of a parameter ray at a rational angle.

Remark. In Section 8, we will strengthen the second statement by
showing that no rational parameter ray can ever land on the boundary
of a non-hyperbolic component (provided such a thing exists at all).

Proof. The statement about hyperbolic components is well known
at least in the quadratic case; see [DH1], [M3, Theorem 6.5], or [S1,
Section 5]. For the general case, see [Eb, ES].

Assume that two rational parameter rays RM(ϑ1) and RM(ϑ2) land
at different points c1, c2 ∈ ∂Md on the boundary of the same non-
hyperbolic component. The points c1 and c2 cannot also be on the
boundary of the same hyperbolic component: along the boundary of
each hyperbolic component, there is a dense set of parabolic parame-
ters, and these are landing points of parameter rays at periodic angles
so that c1 and c2 cannot be connected by the same non-hyperbolic
component.

If one of the ϑi is periodic, then the landing point of R(ϑ1) is the
root or co-root of a hyperbolic component. When applying the Branch
Theorem 3.1 below to ci, we will mean the center of this component.
The corresponding centers are different even if both angles are periodic.

Since c1 and c2 are on the closure of the same non-hyperbolic com-
ponent, there cannot be a Misiurewicz point or a hyperbolic component
separating c1 and c2 from each other and from the origin. Therefore,
by the Branch Theorem 3.1, one of these two points must be within
the wake associated to the other point. Without loss of generality, as-
sume that c2 is within the wake of c1. Take a third preperiodic angle
ϑ3 within the wake of c1 but outside of the wake of c2, and so that its
landing point c3 is a Misiurewicz point different from c1 and c2. If c2 is
within the wake of the Misiurewicz point c3, then two rays landing at c3

separate c1 and c2, so c1 and c2 cannot be on the boundary of the same
non-hyperbolic component. Otherwise the Branch Theorem supplies
another Misiurewicz point or hyperbolic component separating c2 and
c3 from each other and from the origin. Call this new branch point
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c4. If c4 	= c1, then c4 separates c2 from c1, and again these two points
cannot be on the boundary of a common non-hyperbolic component.

Finally, we have to deal with the case c4 = c1. If c1 is a Misiurewicz
point, then choosing ϑ3 within the same subwake of c1 as c2 assures that
c4 	= c1. Otherwise, c1 is a root or co-root of a hyperbolic component
W and c2 is in the wake of W , but c2 /∈ W . By Theorem 2.3, c2 is
in some subwake of W , so the rays bounding this subwake separate c1

and c2.

Remark. The corollary can also be shown (perhaps more conceptu-
ally) using internal addresses as introduced in [LS1].

The most important application of the Branch Theorem is to re-
late local connectivity and density of hyperbolicity for Mandelbrot and
Multibrot sets. We will do that in Corollary 4.6, showing also that
local connectivity and triviality of all fibers is equivalent.

4. Fibers of Multibrot Sets

In this section, we introduce the fundamental concept of this paper,
fibers of Multibrot sets, and establish their most fundamental properties.
We will use parameter rays at rational angles; recall that these are known
to land (at parabolic respectively Misiurewicz parameters).

Definition 4.1 (Separation Line).
A separation line is either a pair of parameter rays at rational angles
landing at a common point (a ray pair), or a pair of parameter rays at
rational angles landing at two different points on the boundary of the
same hyperbolic component of the Multibrot set, together with a sim-
ple curve within this hyperbolic component which connects the landing
points of the two rays. Two points c, c′ in a Multibrot set can be sepa-
rated if there is a separation line γ avoiding c and c′ such that c and
c′ are in different connected components of C \ γ.

Definition 4.2 (Fibers and Triviality).
The fiber of a point c in a Multibrot set Md is the set of all points
c′ ∈ Md which cannot be separated from c. The fiber of c is trivial if it
consists of the point c alone.

It will turn out that points on the closure of a hyperbolic component
of a Multibrot set have trivial fibers. For all other points, it will be
good enough to construct fibers using ray pairs at periodic external
angles. We will justify this in Section 8.

The idea of fibers is related to the Branner-Hubbard-Yoccoz puzzle:
a typical proof of local connectivity at a point z consists in establish-
ing shrinking of puzzle pieces around z. The fiber of a point contains
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exactly those points which are always in the same puzzle piece, inde-
pendently of the puzzle chosen. Our arguments will thus never use
specific puzzles. The definition here is somewhat simpler than in [S2],
which was written for arbitrary compact connected and full subsets of
C: some conceivable difficulties cannot occur for Multibrot sets because
of the Branch Theorem 3.1 and its Corollary 3.2. The equivalence of
both definitions follows from Corollary 3.2 and [S2, Lemma 2.4].

Proposition 4.3 (Fibers of Interior Components).
The fiber of a point within a hyperbolic component of a Multibrot set is
always trivial. The fiber of a point within any non-hyperbolic compo-
nent of a Multibrot set always contains the closure of its non-hyperbolic
component.

Proof. Let c be an interior point in a hyperbolic component. It can
easily be separated from any other point within the same hyperbolic
component by a separation line consisting of two rational parameter
rays landing on the boundary of this hyperbolic components, and a
curve within this component; there are infinitely many such rays by
Corollary 3.2.

Any boundary point of the hyperbolic component, and any point in
Md outside of this component, can also be separated from c by such a
separation line (here it is important to have more than two boundary
points of the component which are landing points of rational parameter
rays; if there were only two such boundary points, then these points
could not be separated from any interior point).

By definition, no separation line can run through a non-hyperbolic
component, so the fibers of all non-hyperbolic interior points (if any)
contain at least the closure of this non-hyperbolic component. (Since
no non-hyperbolic component can have more than one boundary point
which is the landing point of rational rays, no separation line could
run through such a component even if we had not excluded this in
the definition; so the definition as written does not impose additional
restrictions on possible separation lines).

Here are a few more useful properties of fibers.

Lemma 4.4 (Properties of Fibers).
Fibers have the following properties:

(1) Fibers are always compact, connected and full.
(2) The relation “is in the fiber of” is symmetric: for two points

c, c′ ∈ Md, either each of them is in the fiber of the other one,
or both points can be separated.
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(3) The boundary of any fiber is contained in the boundary of Md,
unless the fiber consists of a single hyperbolic parameter and
is thus trivial.

(4) If γ is a separation line of Md and c ∈ Md \ γ, then

{c′ ∈ Md : γ does not separate c′ from c }

is connected.

Proof. If c′ is not in the fiber of c, then by definition these two points
can be separated, and c is not in the fiber of c′. This proves the second
claim.

No interior point of Md can be in the boundary of any non-trivial
fiber: a hyperbolic interior point is a trivial fiber by itself, and closures
of non-hyperbolic components are completely contained in fibers. This
settles the third claim.

For the last claim, it is clear that C \ γ consists of two connected
components, say U1 and U2 with c ∈ U1. Then M ′ := (U1 ∪ γ) ∩ Md

is closed, and we need to show that M ′ is connected. If not, then
M ′ = P ∪ Q with two non-empty and disjoint sets P and Q which are
closed in M ′. But since M ′∩γ is closed, it follows that P ∩γ and Q∩γ
are disjoint closed subsets of γ, and (P ∩ γ) ∪ (Q ∩ γ) = M ′ ∩ γ. But
this is a contradiction because γ ∩ M ′ = γ ∩ Md is connected.

The fiber of any c ∈ Md is compact because every separation line
separates an open subset of Md from c. In the construction of the
fiber of c, the set of points in Md not separated from c by one ray pair
is a connected and full neighborhood of c, and nested intersections of
compact, connected and full subsets of C are compact, connected and
full. The only further possible separation lines run through hyperbolic
components, and it is easy to modify a sequence of such separation
lines so as to leave nested intersections of compact connected and full
neighborhoods of c. (See also [S2, Lemma 2.4].)

A key observation is that triviality of a fiber of some c ∈ Md implies
that Md is locally connected at c. Note that the converse is false: if
a compact connected and full set K ⊂ C is locally connected at some
z ∈ ∂K, this does not imply that the fiber of z is trivial, or that z is the
landing point of any external ray (although sometimes this assumption
seems to be made implicitly: triviality of the fiber of z is a strictly
stronger property, and it is this property which implies the landing of
some external ray). A counterexample is provided by [M1, Figure 36]
or [S2, Figure 2].
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Proposition 4.5 (Trivial Fibers Yield Local Connectivity).
If the fiber of a point c ∈ Md is trivial, then Md is locally connected at
c. Moreover, if c ∈ ∂Md has trivial fiber and is in the impression of
the parameter ray at some angle ϑ (in particular, if the ϑ-ray lands at
c), then for any sequence of external angles converging to ϑ, the corre-
sponding impressions converge to {c} in the Hausdorff metric, and the
parameter ray at angle ϑ has impression {c}, so in particular it lands
at c. If all the fibers of Md are trivial, then Md is locally connected, all
parameter rays land, all impressions are points, and the landing points
depend continuously on the angle.

Proof. Consider a point c ∈ Md with trivial fiber. If c is in the interior
of Md, then Md is clearly locally connected at c. Otherwise, let U be an
open neighborhood of c. By assumption, every point c′ ∈ Md\U can be
separated from c such that the separation avoids c and c′. The region
cut off from c is open; what is left is a closed neighborhood of c having
connected intersection with Md (Lemma 4.4 item 4). By compactness
of Md \ U , a finite number of such cuts suffices to remove every point
outside U , leaving another closed neighborhood of c intersecting Md in
a connected set. Similarly, if c is in the impression of the ϑ-ray, then
parameter rays with angles sufficiently close to ϑ will have their entire
impressions in U (although the rays need not land). The impression
of the ϑ-ray is thus contained in the fiber of c, so the ray lands at c.
Finally, it is easy to see that the impression of any ray is contained
in a single fiber: the impression of the ray at angle ϑ cannot cross a
separation line which does not involve the ray at angle ϑ (compare [S2,
Lemma 2.5]).

Now we show that local connectivity of the entire Multibrot set is
equivalent to all its fibers being trivial (while local connectivity at a
single point does not imply triviality of the fiber of this point). Local
connectivity resp. triviality of fibers of all of Md implies that every
interior component is hyperbolic. We use the ideas of the original
proof of Douady and Hubbard [DH1, Exposé XXII.4].

Corollary 4.6 (Local Connectivity, Fibers & Hyperbolicity).
For the Mandelbrot and Multibrot sets, local connectivity at all points
is equivalent to triviality of all fibers, and both imply density of hyper-
bolicity.

Proof. We know from Proposition 4.5 that triviality of all fibers
implies local connectivity. Moreover, any non-hyperbolic component
would be contained in a single fiber, so triviality of all fibers implies
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that all interior components are hyperbolic. Since the exterior of Md is
hyperbolic as well, triviality of all fibers of Md implies that hyperbolic
dynamics is dense in the space of unicritical polynomials of degree d.

c1 c2

c3

ϑ
1 ϑ2

ϑ3

Y

A1

A2

Figure 3. Illustration of the proof that local connec-
tivity implies that all fibers are trivial. Highlighted is
a non-trivial fiber Y , and three of its boundary points
c1, c2, c3 together with parameter rays landing there. The
Branch Theorem, applied to the hyperbolic components
A1 and A2, provides then a contradiction.

It remains to show that local connectivity of a Multibrot set implies
that all fibers are trivial. For this, we assume that the Multibrot set Md

is locally connected. If there is a fiber which is not a singleton, or which
even contains a non-hyperbolic component, denote it Y . The set Y is
then uncountable and its boundary is contained in the boundary of Md

by Lemma 4.4. Let c1, c2, c3 be three boundary points which are not
landing points of any of the countably many parameter rays at rational
angles; compare Figure 3. By local connectivity and Carathéodory’s
Theorem, there are three parameter rays at angles ϑ1, ϑ2, ϑ3 landing at
these points, and these three rays separate C \ Y into three regions.
Similarly, the three angles cut S1 into three open intervals. Pick one
periodic angle from each of the two intervals which do not contain 0;
the corresponding parameter rays land at roots or co-roots of two hy-
perbolic components A1 and A2. The three parameter rays at angles
ϑi, together with Y , separate these two components from each other
and from the parameter ray at angle 0 and thus from the origin. Ap-
plying the Branch Theorem 3.1 to these two components, there must
either be a Misiurewicz point or a hyperbolic component separating
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these two components from each other and from the origin. If it is a
Misiurewicz point, then three rational rays landing at it must separate
the three points c1, c2, c3 from each other, which is incompatible with
Y being a single fiber or a non-hyperbolic component. Similarly, if the
separation is given by a hyperbolic component, then this component,
together with the parameter rays forming its wake and the subwakes
containing A1 and A2, again separate the three ci, yielding the same
contradiction.

We conclude that, if a Multibrot set is locally connected, then its
fibers are trivial, and every connected component of its interior is hy-
perbolic.

Remark. Local connectivity of the entire set Md is definitely stronger
than density of hyperbolicity: the former amounts to fibers being
points, while the latter means only that fibers have no interior. This
argument is taken from Douady [Do].

5. Boundaries of Hyperbolic Components

In this section, we will study boundary points of hyperbolic components,
except roots of primitive components which will require special treatment
(see Section 6). All results in this sections are corollaries to Theorem 2.3.

Corollary 5.1 (Trivial Fibers at Hyperbolic Components).
In every Multibrot set, the fiber of every boundary point of every hy-
perbolic component is trivial, except possibly at the root of a primitive
component. The fiber of the root contains no point within the limb of
the component.

Proof. Any boundary point c of a hyperbolic component can obvi-
ously be separated from any point within the closure of the component
and from every sublimb of which it is not a root. This shows that fibers
are trivial for boundary points at irrational internal angles and at co-
roots (which exist only for d ≥ 3), because by Theorem 2.3 neither have
sublimbs attached. If c is the root of a hyperbolic component W , then
it can obviously be separated from any other point within the closure
of W or from any rational sublimb, so its fiber contains no point within
the limb of the component. If c is the point where the component W
bifurcates from W0, then both arguments combine to show that the
fiber of c is trivial.

The following corollary has been suggested by John Milnor. It will
be strengthened in Corollary 6.4.
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Corollary 5.2 (Roots Do Not Disconnect Limbs).
The limb of any hyperbolic component is connected.

Remark. Note that we define the wake of a hyperbolic component to
be open, so that the limb of the component (the intersection of the wake
with the Multibrot set) is a relatively open subset of Md. Sometimes,
wake and limb are defined so as to also contain the root. With that
definition, the corollary says that the root does not disconnect the limb.

Proof. Let W be the hyperbolic component defining the wake. As-
sume that its limb consists of more than one connected component, and
let K be a connected component not containing W . Any point within
K must then, by Theorem 2.3, be contained within some rational sub-
limb of W , and all of K must be contained within the same sublimb.
But since the entire set Md is connected and the limb is obtained from
Md by cutting along a pair of parameter rays landing at the root of the
limb, it follows that the limb is connected as well.

Here is another corollary which has been found independently by
Lavaurs [La, Proposition 1], Hubbard (unpublished) and Levin [Le,
Theorem 7.3]; another proof is in [LS1, Lemma 3].

Corollary 5.3 (Analytic Continuation Over the Entire Wake).
If c ∈ Md is a parameter which has an attracting periodic point z, then
this periodic point can be continued analytically as an analytic map z(c)
over the entire wake of the hyperbolic component containing c, and it is
repelling except on the closure of the component. Within any subwake
at internal angle p/q, the point z(c) is the landing point of exactly q
dynamic rays with combinatorial rotation number p/q.

Proof. Denote the hyperbolic component by W , let c0 be its root and
let U be the wake of W . The orbit z(c) can be continued analytically
throughout a neighborhood of W \{c0} restricted to the wake of W , and
the orbit becomes indifferent on ∂W ([M3, Section 6], [S1, Section 5]).

Let Up/q be a subwake of W at rational internal angle p/q, and
let cp/q ∈ ∂W be the root point of Up/q. Then z(c) can be continued
analytically in a neighborhood of cp/q, and within Up/q it is the repelling
landing point of q periodic dynamic rays. The locus where these q rays
land together at a repelling orbit is exactly Up/q [M3], so z(c) can be
continued analytically throughout Up/q. By Theorem 2.3, the limb of

W consists of W \{c0}, together with the sublimbs at rational internal
angles, so z(c) is repelling within all of U \ W . While this argument
a priori holds only for analytic continuation along curves within Up/q,
the wake U is simply connected, so the homotopy class of curves of
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analytic continuation within U does not matter. (However, analytic
continuation within C can bring the orbit z(c) to any other orbit of
period n [LS1].)

Remark. For parameters within a hyperbolic component of period n,
there are d distinguished periodic points: the point on the attracting
orbit in the Fatou component containing the critical value, and d − 1
further boundary points of the same Fatou component with the same
ray period (and possibly smaller orbit period). If n > 1, then exactly
one of these boundary points is the landing point of at least two dy-
namic rays (this point is the “dynamic root” of the Fatou component),
it is repelling and can be continued analytically over the entire wake
of the component, retaining its dynamic rays [M3, Theorem 3.1]. The
remaining d − 2 distinguished boundary points of the Fatou compo-
nent are landing points of one dynamic ray each (they are “dynamic
co-roots”), and they also remain repelling and keep their rays through-
out the wake [Eb, ES]. For the attracting orbit, this is not true: the
orbit remains repelling away from W , but the rays landing at the orbit
change: traversing the wake of W outside of Md, the combinatorial
rotation number of the orbit z(c) behaves (locally) monotonically with
respect to external angles, rotating d− 1 times around S1. See also the
appendices in [M3] and [GM].

6. Roots of Hyperbolic Components

In this section, we prove triviality of fibers at roots of primitive compo-
nents. This case is not handled by the arguments from the previous section,
nor by the Yoccoz inequality. We start with a combinatorial preparation.

Lemma 6.1 (Approximation of Ray Pairs, Periodic Case).
Let ϑ < ϑ′ be the two periodic external angles of the root of a primitive
hyperbolic component of period n > 1. Then there exists a sequence of
periodic parameter ray pairs (ϑk, ϑ

′
k) such that ϑk ↗ ϑ and ϑ′

k ↘ ϑ′.

Proof. Let c be the center of the hyperbolic component. In the
dynamical plane of pc, the two dynamic rays Rc(ϑ) and Rc(ϑ

′) land
together at the Fatou component containing the critical value; let U1

be the open region thus separated from the origin. Since (ϑ, ϑ′) is a
characteristic ray pair, U1 does not contain a ray on the forward orbit
of ϑ or ϑ′, hence U1 does not contain a point on the critical orbit other
than the critical value c.

The preimage of the ray pair (ϑ, ϑ′) consists of d ray pairs which
bound a neighborhood U0 of the critical point. Then pc : U0 → U1 is
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a branched cover of degree d, ramified only over the critical value c.
Pulling back along the periodic critical orbit, we obtain a neighborhood

U−n+1 of c such that p
◦(n−1)
c : U−n+1 → U0 is a conformal isomorphism,

and U−n+1 is bounded by d ray pairs, each of which maps to (ϑ, ϑ′)
under p◦nc .

Let V := C \ (U1 ∪ U0 ∪ . . . ∪ U−n+1), and let V0 be the connected
component of V containing the ray pair (ϑ, ϑ′) on its boundary. Since
the component is primitive, the orbits of ϑ and ϑ′ are disjoint, so V0 is
non-empty. By construction, V does not contain any point on the crit-
ical orbit, so V0 can be pulled back arbitrarily often along any branch
of p−1

c . Since the periodic ray pair (ϑ, ϑ′) is on the boundary of V0,

there is a branch of p
◦(−n)
c sending V0 onto some V1 ⊂ C such that V1

contains (ϑ, ϑ′) on its boundary.
Now we show that V1 ⊂ V0. Clearly V1 ∩ V0 is non-empty because

both ϑ and ϑ′ have period n, and if V1 	⊂ V0, then V1 would contain a
dynamic ray bounding V0. Mapping forward n times, V0 would contain
a dynamic ray on the forward orbit of ϑ or ϑ′, but all those are on the
boundary of some Ui.

Since V1 ⊂ V0, the map p
◦(−n)
c : V0 → V1 is a uniform contraction

with respect to the hyperbolic metric on C \ {0, c, pc(c), . . .}, and it
fixes the landing point z1 of the ray pair (ϑ, ϑ′), so iteration of this
map converges locally uniformly on V0 to z1. Let V1, V2, V3 . . . denote
the respective image domains of V0. All these domains are bounded
by the same number of ray pairs: one of them is (ϑ, ϑ′), all the others
are preperiodic on the backwards orbit of (ϑ, ϑ′). Therefore, each Vk

contains one preperiodic boundary ray pair (ϑk, ϑ
′
k) which separates Vk

from U0 and hence from the origin, and possibly after relabeling we
may assume that ϑk ↗ ϑ and ϑ′

k ↘ ϑ′.
For every k, there is an s < n such that p◦kn+s

c sends (ϑk, ϑ
′
k) to

(ϑ, ϑ′).1 More precisely, it is easily seen that p◦kn+s
c (ϑk) = ϑ′ and

p◦kn+s
c (ϑ′

k) = ϑ: this is because the external angles of rays within V0

and Vk are contained within finitely many open intervals, and ϑ′ and
ϑk are lower boundaries of such intervals, while ϑk and ϑ′

k are upper
boundaries. Therefore, we can pull back V0 for kn + s steps along the
backwards orbit from (ϑ, ϑ′) to (ϑk, ϑ

′
k) so as to yield a domain Ṽk ⊂ Vk

with a conformal isomorphism p
◦(kn+s)
c : Ṽk → V0.

The set of external angles of each Vk and each Ṽk consists of the same
number of closed intervals. Let Ik be the boundary interval of Ṽk with
ϑk as lower boundary, and let I ′

k be the boundary interval of Ṽk with ϑ′
k

1The value of s does not depend on k at least for large k, but we do not need
this fact.
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as upper boundary. Since the dynamics of pc induces the doubling map
on external angles, the set 2kn+sIk is an interval of boundary angles
of V0 with ϑ′ as lower boundary; therefore, 2kn+sIk ⊃ I ′

k. Similarly,

2kn+sI ′
k ⊃ Ik. Therefore, there are external angles ϑ̃k ∈ Ik and ϑ̃′

k ∈ I ′
k

with 2nk+sϑ̃k = ϑ̃′
k and 2nk+sϑ̃′

k = ϑ̃k, so both angles are periodic with

period 2(nk + s) and the corresponding rays R(ϑ̃k) and R(ϑ̃′
k) land at

repelling periodic points znk+s and z′nk+s. Since p
◦(−2(nk+s))
c induces a

conformal map from V0 into Vk ⊂ V0 which fixes the two rays ϑ̃k and
ϑ̃′

k, the same branch fixes znk+s and z′nk+s; but that implies znk+s =

z′nk+s, so (ϑ̃k, ϑ̃
′
k) is a ray pair consisting of periodic angles. If it is not

characteristic, then the characteristic ray pair of the orbit separates
(ϑ̃k, ϑ̃

′
k) from c, and thus also from (ϑ, ϑ′). Possibly after relabeling,

we may assume that the ray pairs (ϑ̃k, ϑ̃
′
k) are characteristic, so by

Theorem 2.1 there is a corresponding periodic ray pair in parameter
space which satisfies the claim.

Remark. The previous lemma can also be proved using Hubbard
trees, similarly as in Lemma 7.1 (see [S3]). Our proof is motivated by
the Orbit Separation Lemma from [S1, Lemma 3.7] and [Eb].

Lemma 6.2 (Fiber of Primitive Root).
Let c0 be the root of any primitive hyperbolic component and let c̃ 	= c0

be some point in Md which is not in the limb of c0. Then there is a
parameter ray pair at rational angles separating c0 from c̃ and from
the origin. In particular, the fiber of the root of a primitive hyper-
bolic component does not contain any point outside of the wake of the
component.

Proof. The strategy of the proof is simple: if we denote the periodic
parameter ray pair landing at c0 by (ϑ, ϑ′), then Lemma 6.1 supplies
a sequence of parameter ray pairs (ϑk, ϑ

′
k) converging to (ϑ, ϑ′), and

in the dynamics of c0 there are characteristic dynamic ray pairs at the
same angles. If not all of these characteristic dynamic ray pairs exist
for c̃, then c̃ is separated from c0 by one of the parameter ray pairs
(ϑk, ϑ

′
k) (because these ray pairs bound the regions in parameter space

for which the corresponding dynamic ray pairs exist: see Theorem 2.1).
In this case, the two points c0 and c̃ can be separated as claimed and
are thus in different fibers.

We may hence assume that all these dynamic ray pairs exist for
the parameter c̃. We will then show that the limiting dynamic rays at
angles ϑ and ϑ′ also form a ray pair: this forces c̃ to be in the closure of
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the wake of c0, contradicting our assumption. This finishes the proof
of the lemma.

The only thing we need to prove, then, is the following claim: as-
sume that for the parameter c̃, the dynamic rays R(ϑk) and R(ϑ′

k) land
together for every k. Then the dynamic rays R(ϑ) and R(ϑ′) also land
together.

To prove this claim, denote the period of ϑ and ϑ′ by n. We start
the discussion in the dynamical plane of c0. For k ≥ 0, let Uk ⊂ C

be the domain enclosed by the ray pairs (ϑ, ϑ′) and (ϑk, ϑ
′
k). Clearly,

Uk+1 ⊂ Uk for all k. Choose N ∈ N large enough so that UN does not
contain a point on the critical orbit. Set p0(z) := zd + c0. Then there
is a single branch of p−n

0 which fixes the dynamic rays R(ϑ) and R(ϑ′)
and which maps each Uk into itself (at least for k ≥ N).

All this works in the dynamical plane of c0. For the parameter c̃,
denote the landing points of R(ϑ) and R(ϑ′) by w and w′, respectively.
Then the critical value cannot be separated from w or w′ by any rational
ray pair (α, α′) landing at a repelling orbit: there is no such ray pair for
c0; if there exists one for c̃, then such a ray pair would continue to exist
in a neighborhood of c̃, and the largest neighborhood of c̃ where such
a ray pair exists will be bounded by parameter ray pairs at rational
angles [M3, Theorem 3.1].

Similarly, for any m > 0, the m-th forward image of the critical
value cannot be separated from the landing points of the dynamic rays
R(2mϑ) and R(2mϑ′), or we could pull back such a separating ray pair,
obtaining a separation between the critical value and R(ϑ) and R(ϑ′).
It follows that each (ϑk, ϑ

′
k) (for k > N) is separated from the critical

orbit by other such ray pairs (ϑj, ϑ
′
j) and (ϑj′ , ϑ

′
j′) with j < k < j′.

Set p(z) := zd + c̃, P := ∪m≥0p◦m(c) (the postcritical set), X :=
C\P and X ′ := p−1(X). The set X is clearly open, and it is non-empty
because it contains the region bounded by the ray pairs (ϑN , ϑ′

N) and
(ϑk, ϑ

′
k) for k > N . Since P is forward invariant, we have X ′ ⊂ X,

and p : X ′ → X is an unbranched covering, i.e., a local isometry with
respect to the hyperbolic metrics of X and X ′.

Let u, u′ be two points on the dynamic rays R(ϑ) and R(ϑ′), respec-
tively, and construct a simple piecewise analytic curve γN as follows:
connect u along an equipotential to R(ϑN) (the “short way”, decreasing
angles), then continue along this ray towards its landing point, then
out along R(ϑ′

N) up to the potential of u′, and connect finally along
this equipotential to u′ (increasing angles). This curve runs entirely
within X, so it has finite hyperbolic length �N , say.
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Now we pull this curve back along the periodic backwards orbit of
R(ϑ) and R(ϑ′), yielding a sequence of curves γN , γN+1, γN+2, . . . after
0, k, 2k, . . . steps. The branch of the pull-back fixing ϑ will also fix ϑ′:
we had verified that in the dynamics of c0, and this is no different for
c̃ because the critical value is always on the same side of all the ray
pairs.

Denote the hyperbolic lengths of γk in X by �k. Since X ′ ⊂ X, this
sequence is strictly monotonically decreasing. The two endpoints of the
curves in the sequence obviously converge to the two landing points w
and w′ of R(ϑ) and R(ϑ′). Now there are two possibilities: either the
sequence (γk) has a subsequence which stays entirely within a compact
subset of X, or it does not. If it does, then the hyperbolic length shrinks
by a definite factor each time the curve is within the compact subset of
X, so that we can connect points arbitrarily closely to w and w′ (with
respect to the Euclidean metric) by (hyperbolically) arbitrarily short
curves at bounded (Euclidean) distances from the postcritical set, and
this implies w = w′ as required. However, if these curves converge to
the boundary, then their Euclidean lengths must shrink to zero, and
we obtain the same conclusion. The proof of the lemma is complete.

Corollary 6.3 (Trivial Fibers at Hyperbolic Components).
The fiber of every point on the closure of any hyperbolic component of
a Multibrot set Md is trivial.

Proof. In Corollary 5.1, we have already done most of the work; the
remaining statement is exactly the content of the previous lemma.

The next corollary strengthens Corollary 5.2 and has also been sug-
gested by Milnor.

Corollary 6.4 (Roots Disconnect Multibrot Sets).
Every root of a hyperbolic component of period greater than 1 discon-
nects its Multibrot set into exactly two connected components.

Proof. Let c0 be the root of a hyperbolic component W of period
greater than 1. It is the landing point of exactly two parameter rays
at periodic angles. This parameter ray pair disconnects C into exactly
two connected components. The component not containing the origin
is the wake of W ; its intersection with Md is the limb. By Corollary 5.2,
the limb is connected. Now let c̃ ∈ Md with c̃ 	= c0 be any parameter
not in the limb of W .

We first discuss the case when W is primitive. By Lemma 6.2 above,
there is a rational parameter ray pair S separating c0 from c̃ and from
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the origin. This ray pair S disconnects C into two connected compo-
nents. Let M′ be the closure of the connected component of the origin
intersected with Md. Then M′ itself is connected and contains the ori-
gin and c̃. It follows that c̃ and 0 are in the same connected component
of Md \ {c0}, so c0 cuts Md into exactly two connected components.

In the non-primitive case, the parameter c0 is the root of W and
on the boundary of another hyperbolic component, say W0. Then by
Theorem 2.3, there are three cases: the point c̃ may be outside of the
limb of W0 so that the two parameter rays landing at the root of W0

separate c0 and c̃; the point c̃ may be on the closure of W0; or it may be
in a sublimb of W0 at rational internal angles, but not in the sublimb
with c0 on its boundary (which is the wake of c0). In all three cases,
it is easy to see that c̃ must be in the same connected component of
Md \ {c0} as the origin.

Therefore, c0 disconnects Md into exactly two connected compo-
nents in the primitive as well as in the non-primitive case.

Corollary 6.5 (Rays at Boundary of Hyperbolic Component).
Every boundary point of a hyperbolic component at irrational internal
angle is the landing point of exactly one parameter ray, and the external
angle of this ray is irrational (and in fact transcendental).

Every boundary point at rational internal angle is the landing point
of exactly two parameter rays, except co-roots: these are the landing
points of exactly one parameter ray. The external angles of all these
rays are periodic and in particular rational.

In no case is a boundary point of a hyperbolic component in the
impression of any further parameter ray.

Proof. Every boundary point of a hyperbolic component at irrational
internal angle is in the boundary of Md and thus in the impression of
some ray. Since the fiber of this boundary point is trivial, the ray
must land there and its impression is a single point (Proposition 4.5).
And since all the parameter rays at rational rays land elsewhere, the
external angle of the ray must be irrational (and in fact transcendental;
see [BuS] for a proof in the quadratic case). If this point is in the
impression of a further ray, this ray must land there, too, and these
two rays separate some open subset of C from the component. Since not
all rays between the two landing rays can land at the same point (the
rational rays land elsewhere), there must be some part of Md between
these two rays, and this contradicts Theorem 2.3.
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We know that boundary points at rational internal angles are para-
bolic points, and the statements about the landing properties of ratio-
nal parameter rays are well known (compare Section 2). If a parabolic
point is in the impression of an irrational parameter ray, it is the land-
ing point of that ray. We then get a similar contradiction as above,
except if the parabolic point is the root of a primitive component and
the extra parameter ray is outside of the wake of the component. But
that case is handled conveniently by Lemma 6.1, supplying lots of pa-
rameter ray pairs which separate any parameter ray outside of the wake
of the component from the component, its root, and all of its co-roots.

7. Misiurewicz Points

Now we turn to Misiurewicz points, proving triviality of fibers in a some-
what similar way to Section 6. Again, we need some combinatorial prepa-
rations in analogy to Lemma 6.1.

Lemma 7.1 (Approximation of Ray Pairs, Preperiodic Case).
Let c0 be a Misiurewicz parameter with external angles ϑ0 < ϑ1 < . . . <
ϑs. Then for every sufficiently small ε > 0 and every i ∈ {0, 1, . . . , s−
1}, there is a periodic parameter ray pair (αi, α

′
i) with

(1) ϑi < αi < ϑi + ε < ϑi+1 − ε < α′
i < ϑi+1

and similarly, there is another periodic parameter ray pair (α, α′) with
ϑ0 − ε < α < ϑ0 and ϑs < α′ < ϑs + ε.

Remark. The number of preperiodic parameter rays landing at c0 is
s + 1, and this can be any positive integer. If s = 0, then condition (1)
is void.

Sketch of proof. For the postcritically preperiodic parameter c0,
we will use the Hubbard tree T as introduced in Section 2. (The ar-
gument could also be translated into statements on external angles
similarly as in Lemma 6.1, thus using fewer topological properties of
the Julia set.)

By expansivity of Hubbard trees, there is a sequence (zk) ∈ [0, c0]
of points with zk → c0 such that p◦Nk−1

c0
(zk) = 0 for some sequence

Nk of integers (which necessarily tends to ∞). We may assume that
the zk are close enough to c0 so that there is no branch point of T in
the interior of [zk, c0]. After replacing zk by another point on [zk, c0] if
necessary, we may suppose p◦Nk

c0
: [zk, c0] → p◦Nk

c0
([zk, c0]) = [c0, p

◦Nk
c0

(c0)]
is a homeomorphism. Since c0 is an endpoint of T , it follows that p◦Nk

c0
sends [zk, c0] over itself in an orientation reversing way, and there is a
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point pk ∈ [zk, c0] with p◦Nk
c0

(pk) = pk. The periods of pk tend to ∞ as
k → ∞. The characteristic point of the orbit of pk is either pk itself
or another point on [pk, c0]; relabel so that all pk are characteristic.
Clearly, each pk is the landing point of a periodic ray pair at angles
αk, α

′
k with 0 < αk < ϑ0 < ϑs < α′

k; for k sufficiently large depending
on ε, we even have ϑ0 − ε < αk < ϑ0 < ϑs < α′

k < ϑs + ε. Now
Theorem 2.1 transfers these ray pairs into parameter space. This proves
the second claim of the lemma, which is all we need to do if s = 0.

If s > 0, then pick any i ∈ {0, 1, . . . , s − 1} and take a Misiurewicz
point c with external angles in (ϑi, ϑi+1). By Theorem 2.1, in the
dynamics of c there is a characteristic preperiodic point z at which all
the dynamic rays at angles ϑj land. We can find a point w ∈ [z, c]
arbitrarily close to z with the following properties:

• w is a precritical point, i.e. there is an N such that p◦Nc (w) = c;
• the restriction p◦Nc : [z, w] → [p◦Nc (z), p◦Nc (w)] is a homeomor-

phism (if not, then there is a w′ ∈ [z, w] which can be used
instead of w);

• none of the finitely many branch points of T are in the interior
of [z, w] (again, otherwise w can be replaced by some w′ ∈
[z, w]).

Given such a w with p◦Nc (w) = c, there is an N ′ ≤ N such that w ∈
[z, p◦N

′
c (w)]: N ′ = N certainly works, but choose N ′ > 0 minimal.

Then p◦N
′

c ([z, w]) ⊃ [z, w] (since z is characteristic and preperiodic, we
never have z ∈ [p◦kc (z), 0] for k > 0). Hence there is a p ∈ [z, w] with
p◦N

′
c (p) = p. Clearly p is periodic, and minimality of N ′ assures that

p is characteristic. By choosing w sufficiently close to z depending on
ε > 0, we can assure that all external angles of p are in [ϑi, ϑi + ε] ∪
[ϑi+1−ε, ϑi+1]. Again using Theorem 2.1, there is a parameter ray pair
at the characteristic angles of p.

The following obvious corollary is an analogue to Corollary 6.5.

Corollary 7.2 (No Irrational Rays at Misiurewicz Points).
No Misiurewicz point is in the impression of a parameter ray at an
irrational external angle.

The following theorem is well known for the Mandelbrot set (i.e.
d = 2). As far as I know, it was first proved by Yoccoz using his
puzzle techniques. A variant of this proof for many cases is indicated
in Hubbard’s paper [H, Theorem 14.2]. Tan Lei has published another
proof in [TL1].
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Theorem 7.3 (Misiurewicz Points Have Trivial Fibers).
The fiber of any Misiurewicz point c0 ∈ Md is trivial. In fact, every
c ∈ Md \ {c0} can be separated from c0 by a parameter ray pair at
periodic angles.

Proof. Let ϑ0, . . . , ϑs be the external angles of c0. We have to show
that, for every c ∈ Md \ {c0}, there is a rational ray pair separating c
from c0.

In the dynamic plane of c0, let z be a periodic postcritical point, and
pick N such that p◦Nc0

(c0) = z. In a parameter neighborhood V 
 c0,
the point z can be continued analytically as a periodic point z(c).

Let J be the Julia set for the parameter c0. The critical value is the
landing point of the s + 1 preperiodic dynamic rays ϑ0, . . . , ϑs, hence z
is the landing point of s+1 periodic dynamic rays and J \ {z} consists
of exactly s + 1 connected components J0, . . . , Js. In each connected
component Ji, there is a periodic or preperiodic point pi separating z
from all points on the critical orbit within Ji; we may suppose that
the pi are not on the grand orbit of z: this can be proved in a similar
way as in Lemma 7.1. Let Jz be the connected component of z within
J \ {p0, . . . , ps}. Since z is repelling periodic, there is an M > 0 such

that p
◦(−M)
c0 (Jz) ⊂ Jz (choosing the branch of p

◦(−M)
c0 which fixes z),

and the continued pull-back of Jz along the periodic orbit of z shrinks
to the point z alone: all this argument requires is to have a simply
connected neighborhood of z without postcritical points. It follows
that every z′ ∈ J \{z} is separated from z by a point on the backwards
orbit of one of the pi.

Possibly by shrinking V , we may suppose that all the finitely many
points on the forward orbits of the pi retain all their dynamic rays for
parameters from V , and the first M postcritical points are separated
from z(c) by the pi. Then for all c ∈ V , the set Jz(c) defined analogously

as above satisfies p
◦(−M)
c0 (Jz(c)) ⊂ Jz(c) because this condition is encoded

in the external angles of the dynamic rays landing at the pi. Since z(c)
is repelling, it follows again that every z′ ∈ Jc \ {z(c)} is separated
from z(c) by a point on the backwards orbit of one of the pi (so the
fiber of z(c) is still trivial).

For the parameter c0, the critical value c0 is preperiodic, and an-
alytic continuation gives a preperiodic point z̃(c) defined on V with
z̃(c0) = c0 (possibly by shrinking V again). All dynamic rays ϑ0, . . . , ϑs

land at z̃(c) for c ∈ V . Now pick a c ∈ V \ {c0}. Since separation lines
cannot run through non-hyperbolic components, and every hyperbolic
parameter can be separated from c0 by Proposition 4.3 (or Lemma 7.1),
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we may as well suppose that c ∈ ∂Md. In the dynamics of c, the point
p◦Nc (c) 	= z(c) is separated from z(c) by a rational ray pair, and hence
c is separated from z̃(c) by a rational ray pair (α, α′). Find ε > 0 such
that |α − ϑi| > 2ε and |α′ − ϑi| > 2ε for all i.

By Lemma 7.1, there are finitely many parameter ray pairs (αi, α
′
i)

separating c0 from all parameter rays RM(ϑ) with |ϑ−ϑi| > ε for all i.
The separating dynamic ray pair (α, α′) is stable under perturbations,
so for parameters c′ ∈ C \ Md sufficiently close to c the critical value
has a certain external angle ϑ with |ϑ − ϑi| > ε for all i. Every such
perturbed parameter is thus separated from c0 by one of the finitely
many ray pairs (αi, α

′
i), and since this holds for arbitrarily small per-

turbations, c must be separated from c0 as well by such a parameter
ray pair.

Corollary 7.4 (Misiurewicz Points Disconnect).
Every Misiurewicz point disconnects its Multibrot set into exactly as
many connected components as there are rational parameter rays land-
ing at it.

Proof. All the parameter rays landing at a Misiurewicz point c0 ∈ Md

have preperiodic external angles by Corollary 7.2, and they obviously
disconnect Md into at least as many connected components as there
are such rays.

By Lemma 7.1, between any two adjacent external rays of c0 there
is a collection of rational parameter ray pairs exhausting the interval
of external angles in between, so any extra connected component at
c0 must be in the impression of the parameter rays landing at c0, but
since the fiber of c0 is trivial, these impressions consist of the point c0

only.

8. Fibers and Combinatorics

Now that we have trivial fibers at all the landing points of rational rays,
it follows that fibers have a number of convenient properties. These are
discussed in this section, and fibers are linked to the important concept of
combinatorial classes.

Theorem 8.1 (Fibers of Md are Equivalence Classes).
The fibers of any two points in Md are either equal or disjoint.

Proof. The relation “c1 is in the fiber of c2” is always reflexive, and
it is symmetric for Md by Lemma 4.4. In order to show transitivity,
assume that two points c1 and c2 are both in the fiber of c0. If they are
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not in the fibers of each other, then the two points can be separated by
a separation line avoiding c1 and c2. If such a separation line can avoid
c0, then these two points cannot both be in the fiber of c0. The only
separation between c1 and c2 therefore runs through the point c0, so c0

cannot be in the interior of Md and rational rays land at c0. Therefore,
the fiber of c0 consists of c0 alone. Any two points with intersecting
fibers thus have indeed equal fibers.

The theorem allows to simply speak of fibers of Md as equivalence
classes of points with coinciding fibers, as opposed to “fibers of c” for
c ∈ Md. There is a map from external angles to fibers of Md via
impressions of external rays (compare [S2, Lemma 2.7]). This map is
surjective onto the set of fibers meeting ∂Md.

The following corollary is now obvious and just stated for easier
reference. It strengthens Corollary 3.2.

Corollary 8.2 (Queer Components Rationally Invisible).
No rational parameter ray lands on the boundary of a non-hyperbolic
component.

Combinatorial building blocks of the Multibrot sets which are often
discussed are combinatorial classes. We will show that they are closely
related to fibers.

Definition 8.3 (Combinatorial Classes and Equivalence).
We say that two connected Julia sets are combinatorially equivalent if
in both dynamic planes external rays at the same rational angles land
at common points. Equivalence classes under this relation are called
combinatorial classes.

Remark. In the language of Thurston [T], combinatorially equivalent
Julia sets are those having the same rational lamination. The defi-
nition is such that topologically conjugate (monic) Julia sets are also
combinatorially equivalent (for an appropriate choice of one of the d−1
fixed rays to have external angle 0). In particular, all the Julia sets
within any hyperbolic component, at its root and at its co-roots are
combinatorially equivalent.

With the given definition, the combinatorial class of a hyperbolic
component also includes its boundary points at irrational angles, al-
though the dynamics will be drastically different there. Therefore, the
definition of combinatorial equivalence is sometimes refined.

Remark. There are homeomorphic Julia sets which are not topologi-
cally conjugate and which are thus not combinatorially equivalent: as
an example, it is not hard to see that the Julia set of z2 − 1 (known
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as the “Basilica”) is homeomorphic to any locally connected quadratic
Julia set with a Siegel disk of period one. However, this homeomor-
phism is obviously not compatible with the dynamics, and the Basilica
is in a different combinatorial class than any Siegel disk Julia set.

Proposition 8.4 (Combinatorial Classes and Fibers).
Hyperbolic components together with their roots, co-roots and irrational
boundary points form combinatorial classes. Every other combinato-
rial class is equal to a single fiber. In particular, if there is any non-
hyperbolic component, then its closure is contained in a single combi-
natorial class and a single fiber.

Proof. The landing pattern of dynamic rays changes upon enter-
ing the wake of a hyperbolic component, so any parameter ray pair at
periodic angles separates combinatorial classes. Similarly, the landing
pattern is different within all the subwakes of any Misiurewicz point
c0, and it is yet different in the wake exterior: there is a neighborhood
V of c0 in which the critical value of c0 can be continued analytically
as a preperiodic point z(c) (which equals the critical value only for the
parameter c0). For parameters in V , the rays landing at z(c) have the
same angles, but the d preperiodic inverse images carry different angles
according to which subwake of the Misiurewicz point the parameter is
in. Hence parameter ray pairs at preperiodic angles also separate com-
binatorial classes, and combinatorial classes are just what fibers would
be if separations were allowed only by rational ray pairs, excluding
separation lines containing curves through interior components. Since
fibers are constructed using a larger collection of separation lines, it
follows that every fiber is contained in a combinatorial class. The clo-
sure of any non-hyperbolic component is contained in a single fiber
(Corollary 3.2), so it is also contained within a single combinatorial
class.

We know that the rational landing pattern is constant throughout
hyperbolic components and at its root and co-roots, as well as at its
irrational boundary points. Hyperbolic components with these speci-
fied boundary points are therefore in single combinatorial classes; since
every further point in the Multibrot set is either in a rational subwake
of the component or outside the wake of the component, the combina-
torial class of any hyperbolic component is exactly as described.

Finally, we want to show that every non-hyperbolic combinatorial
class is a single fiber. If this was not so, then two points within the com-
binatorial class could be separated by a separation line. Unless these
points are both on the closure of the same hyperbolic component, such
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a separation line can always be chosen as a ray pair at rational angles,
and we have seen above that such ray pairs separate combinatorial
classes.

The following corollary is closely related to the Branch Theorem 3.1.

Corollary 8.5 (Three Rays at One Fiber).
If three parameter rays of a Multibrot set accumulate at the same fiber,
then the three rays are preperiodic and land at a common Misiurewicz
point. If three parameter rays accumulate at a common combinatorial
class, then this combinatorial class is either a Misiurewicz point or a
hyperbolic component, and the three rays land.

Proof. We will argue similarly as in Corollary 4.6. Denote the three
external angles by ϑ1 < ϑ2 < ϑ3 and let Y be their common fiber.
Choose preperiodic external angles α1 ∈ (ϑ1, ϑ2) and α2 ∈ (ϑ2, ϑ3). The
corresponding parameter rays RM(αi) land at two Misiurewicz points c1

and c2. Applying the Branch Theorem 3.1 to c1 and c2, we find either
that one of these two points separates the other from the origin, or
there is a Misiurewicz point or hyperbolic component which separates
both from each other and from the origin. In all cases, it is impossible
to connect the three parameter rays at angles ϑ1,2,3 to a single fiber,
unless these three rays land at the separating Misiurewicz point or
hyperbolic component. In the Misiurewicz case, all three angles must
be preperiodic by Corollary 7.2. In the hyperbolic case, the landing
points of the three rays RM(ϑi) have trivial fibers by Corollary 6.3,
so all three rays must land at a common point. This is impossible by
Corollary 6.5.

If, however, the three rays are only required to land at a common
combinatorial class, then this combinatorial class may either be a Mi-
siurewicz point or a hyperbolic component, and both cases obviously
occur.

We have defined fibers of a Multibrot set Md using parameter rays
at periodic and preperiodic angles. However, it turns out that only
periodic angles are necessary.

Proposition 8.6 (Fibers Using Periodic Parameter Rays).
Fibers for a Multibrot set Md remain unchanged when they are defined
using only parameter rays at periodic angles, rather than at all rational
angles.

Proof. Preperiodic parameter rays never land on the boundary of an
interior component of Md, so separation lines using preperiodic rays
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are always ray pairs. We only have to show that if any two parameters
can be separated by a preperiodic ray pair, then there is a periodic
ray pair separating them as well. In Theorem 7.3, we have shown that
the fiber of any Misiurewicz point is trivial even when only periodic
parameter ray pairs are used.

Now let c1 and c2 be two parameters of Md in different fibers. If
they are separated by a parameter ray pair at preperiodic angles, let
c0 be the Misiurewicz point at which this ray pair lands. Then there is
a periodic ray pair separating c0 and c1. Since the rays landing at c0

separate c1 and c2, this periodic ray pair must also separate c1 and c2

and we are done.

It follows that combinatorial classes are exactly the pieces that we
can split Multibrot sets into when using only periodic ray pairs as
separation lines. This is exactly the partition used to define internal
addresses in [LS1] (compare also [BrS]), so combinatorial classes are
the objects where internal addresses live naturally.

Theorem 8.7 (The Pinched Disk Model of Multibrot Sets).
The quotient of any Multibrot set in which every fiber is collapsed to a
point is a compact connected locally connected Hausdorff space.

Proof. Every fiber of Md is closed. In fact, the entire equivalence
relation is closed: suppose that (zn) and (z′n) are two converging se-
quences in Md such that zn and z′n are in a common fiber for every n.
The limit points must then also be in a common fiber: if they are not,
then they can be separated by either a ray pair at periodic angles or by
a separation line through a hyperbolic component, and the separation
runs in both cases only through points with trivial fibers. In order
to converge to limit points on different sides of this separation line, all
but finitely many points of the two sequences must be on the respective
sides of the separation line, and zn and z′n cannot be in the same fiber
for large n.

It follows that the quotient space is a Hausdorff space with respect
to the quotient topology. It is obviously compact and connected. Local
connectivity follows from a similar proof as in Proposition 4.5 where
we showed that trivial fibers imply local connectivity.

This quotient space is called the “pinched disk model” of the Multi-
brot set; compare Douady [Do]. It comes with an obvious continuous
projection map π from the actual Multibrot set, and inverse images of
points under π are exactly fibers of Md. Closely related is Thurston’s
lamination model [T].
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In closing, we should mention that triviality of many more fibers
is known, mostly for the Mandelbrot set M2: Yoccoz [H, Part III]
has shown that the fiber of any c ∈ M2 is trivial if c is not infinitely
renormalizable (that is, c is not contained in an infinite sequence of
nested copies of Mandelbrot sets within itself); for certain parameters,
the proof generalizes to degrees d > 2, while for others it does not.
Lyubich [L] has established triviality of many further fibers, and the
surgery methods of Riedl [R] combined with [S4] allow to transfer
triviality of fibers from given parameters to many others, leading to
new results mainly for d > 2.
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